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The nitration of either sulfobenzoic anhydride or sac- 
charin has been described previously in the literature to 
yield 5-nitro-2-sulfobenzoic We were in- 
terested in using nitrated anhydride as a starting material 
for the preparation of the Bromothymol Blue dye which 
would contain a functional group capable of covalent at- 
tachment to the surface of optical fibers. The optical fibers 
with immobilized dye molecules can serve as pH sensors 
for physiological pH  measurement^.^^^ To our surprise, 
we found that the product of nitration, with the same 
melting point as described in the literature'-3 (212-218 "C), 
has a structure of 3-nitro-2-sulfobenzoic anhydride. 
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The assignment of the structure of the product of ni- 

tration is based on 'H and 13C NMR spectroscopy. The 
'H NMR spectrum of the anhydride (Figure 1) shows a 
clean ABC pattern which can correspond to either 3-nitro- 
(structure I) or 6-nitro-2-sulfobenzoic anhydride (structure 
11) but not to the earlier claimed 5-nitro-2-sulfobenzoic 
anhydride (structure 111). The NMR spectrum (Figure 
2) strongly supports the view that the structure is that of 
the 3-nitro-2-sulfobenzoic anhydride (I). The most 
shielded C1 carbon (129.58 ppm) should appear as a 
doublet for 3-nitro-2-sulfobenzoic anhydride (coupling to 
H5 (3&H = 9.12 Hz)) but as a triplet or a pair of doublets 
for 6-nitro-2-sulfobenzoic anhydride (coupling to H3 and 
H5).6 The observed doublet indicates 3-nitro-2-sulfo- 
benzoic anhydride. Also, splitting in the carbonyl C atom 
(155.71 ppm) 3Jc-H = 5.12 Hz and 4Jq-H = 1.26 Hz is 
possible only in the 3-nitro-2-sulfobenzoic anhydride and 
not in the 6-nitro isomer. The additional assigments are 
given directly on the spectrum. 
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= 0-2 Hz, 'Jc-H * 8-10 Hz, 'Jc-H 0-2 Hz? 
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Figure 1. 'H NMR spectrum of 3-nitro-2-sulfobenzoic anhydride 
in CDC1, at room temperature. 
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Figure 2. 13C NMR spectrum of 3-nitro-2-sulfobenzoic anhydride 
in CDCl, at room temperature. 

Carbonyl group has weaker deactivating effect than by 
the sulfonyl g r o ~ p . ~  Therefore, the nitration in the an- 
hydride as well as in saccharin should occur at position 3. 
Although it is difficult to neglect steric effects in the 
substitution at positions 3 and 6, the electronic effects of 
sulfonyl and carbonyl moieties in terms of u, and up pa- 
rameters suggest the following order of the electron den- 
sities: C3 > C6 > C4 > C5 for sulfonamide and amide 
substituents. Also electron densities estimated from the 
13C NMR spectra of anhydride and other sulfobenzoate 
derivativesg indicate the following order of shielding of 
carbon atoms: C3 > C6 > C5 i= C4. Apparently, steric 
hindrances do not prohibit nitration at  position 3 and 
substitution proceeds at  C3. 

We found 3-nitro-2-sulfobenzoic anhydride (I) to be the 
main product of nitration of both sulfobenzoic anhydride 
and saccharin. This observation corrects the existing er- 
roneous claim of the formation of 5-nitro-2-sulfobenzoic 
anhydride (111) under identical reaction conditions. 

Experimental Section 
Commercially available saccharin and sulfobenzoic anhydride 

from Aldrich Chemical Co. were used without purification. 
Melting points were determined using a Mel-Temp open capillary 
melting point apparatus. IR spectra were recorded on a Nicolet 
FTIR Model 5DXB type spectrometer. A 300-MHz GE Model 
300 spectrometer was used to obtain 'H and 13C NMR spectra. 

Nitration of Sulfobenzoic Anhydride or Saccharin. Ni- 
tration was carried out using a mixture of concentrated nitric acid 
and sulfuric acid according to the procedure in the 
Compound I was obtained as a white solid product by pouring 
the reaction mixture onto crushed ice, filtration, washing with 
cold water, and drying.'@ Compound I was formed in 15% yield 
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with a melting point of 215-217 O C  (lit. mp 210-212 OC,l212-218 
OC: 212 O C 3 ) .  IR (KBr, cm-'): 1800,1530,1340,1190,1040,1010. 
'H NMR (CDC13, 6 ppm): 8.80 (d), 8.53 (d), 8.22 (t). 13C NMR 
(CDC13, 6 ppm): 129.58 (Cl), 133.49, 134.86 (C4 or C6), 134.80 
(C2), 139.49 (C5), 143.60 (C3), 155.71 (C7). 

Registry No. I, 127472-56-4; 111, 22952-25-6; sulfobenzoic 
anhydride, 81-08-3; saccharin, 81-07-2. 
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The metathesis between an organic halide and an or- 
ganolithium known as the lithium-halogen interchange was 
discovered some 50 years ago by the groups of Wittig and 
Gilman.1!2 The reaction, which is a reversible process 
leading to an equilibrium mixture favoring the more stable 
~rganolithium,~ has been used extensively to prepare 
relatively stable organometallics such as vinyl- 
,5-9J1J2 and cyclopropyllithiums6gJ3 by treatment of the 
corresponding organohalide with a more reactive alkyl- 
lithium, but the use of the interchange for the generation 
of an alkyllithium has, with a few notable  exception^,'"'^ 
met with less s u c c e s ~ . ~ - ~  The difficulties commonly en- 
countered in the formation of simple alkyllithiums by 
lithium-halogen interchange are a consequence of the re- 
versible nature of the reaction and the capricious behavior 
of alkyl halides when treated with an organolithium. 
Competing reactions such as p-eliminati~n,~-~ a-metala- 
tion," and Wurtz-type coupling to produce symmetrical 
and mixed hydrocarbons3*@ can seriously compromise the 
interchange as an efficient route to alkyllithiums. Recent 
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mechanistic investigations of the lithium-halogen ex- 
have revealed that many of these difficulties 

can be circumvented by judicious choice of experimental 
conditions. Herein we report a simple, convenient, and 
efficient method for the preparation of primary alkyl- 
lithiums by low-temperature lithium-iodine interchange 
that is based on the results of these mechanistic studies. 

Primary alkyllithiums are readily prepared at -78 "C 
(dry icelacetone bath) under an atmosphere of dry, de- 
oxygenated argon (or nitrogen) by addition of 2.1-2.2 molar 
equiv of commercial tert-butyllithium (t-BuLi) in pentane 
to an approximately 0.1 M solution of primary alkyl iodide 
in dry n-pentane-diethyl ether (3:2 by volume). Neither 
the temperature nor the concentration of the alkyl iodide 
is critical to the success of the reaction: the interchange 
is exothermic, and for this reason the reaction should be 
run well below ambient, but the exchange proceeds rapidly 
and cleanly a t  temperatures ranging from -131 OC (N2/ 
pentane bath) to -23 "C (CCl,/dry ice bath). The inter- 
change is complete within a few min at -78 "C (or -131 
"C), and the alkyllithium may be used at this temperature; 
however, the excess t-BuLi remaining in solution may 
complicate product isolation if an electrophile is added to 
the cold reaction mixture. Residual t-BuLi is easily re- 
moved by simply allowing the reaction mixture to stand 
at room temperature for ca. 1 h: the t-BuLi is consumed 
by rapid proton abstraction from diethyl ether,22 leaving 
a clean solution of the less reactive primary alkyllithium. 
As demonstrated by the results summarized in Table I, 
addition of any of a variety of electrophiles to the alkyl- 
lithium solution delivers essentially pure product in good 
to excellent isolated yield. Significantly, the only bypro- 
duct generated by this procedure is a small quantity 
(typically 2-10%) of easily removed hydrocarbon derived, 
as detailed below, from formal reduction of the iodide 
during the interchange r e a c t i ~ n . ' ~ , ~ ~  

t-BuLi E+ 
RCH2Li - RCH2E 

RCH21 n-C5H,*,EtO' 
-78 "C, 5 min 

The success of the interchange reaction depends crit- 
ically on the choice of halide, alkyllithium, and solvent. 
Under the conditions outlined above, the mechanism of 
the interchange reaction between a primary alkyl iodide 
and t-BuLi most likely involves rapid, reversible attack of 
the alkyllithium on the iodine atom of the substrate.l@"aS 
Primary alkyl bromides, in contrast, react with t-BuLi 
predominantly by a process involving single-electron 
transfer.1"21p26 This pronounced halogen effect on the 
mechanism of the interchange has a practical consequence: 
alkyl iodides rather than bromides should be used in the 
exchange reaction for the preparation of primary alkyl- 
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