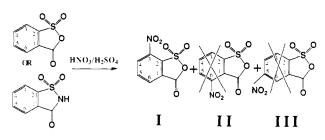
Structure of Nitrated Sulfobenzoic Anhydride Obtained from Sulfobenzoic Anhydride or Saccharin

Jules B. Puschett and Butti S. Rao


Department of Medicine, Renal-Electrolyte Division, 1191 Scaife Hall, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylania 15261

Krzysztof Matyjaszewski*

Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213

Received January 23, 1990

The nitration of either sulfobenzoic anhydride or saccharin has been described previously in the literature to yield 5-nitro-2-sulfobenzoic anhydride.¹⁻³ We were interested in using nitrated anhydride as a starting material for the preparation of the Bromothymol Blue dye which would contain a functional group capable of covalent attachment to the surface of optical fibers. The optical fibers with immobilized dye molecules can serve as pH sensors for physiological pH measurements.^{4,5} To our surprise, we found that the product of nitration, with the same melting point as described in the literature¹⁻³ (212-218 °C), has a structure of 3-nitro-2-sulfobenzoic anhydride.

The assignment of the structure of the product of nitration is based on ¹H and ¹³C NMR spectroscopy. The ¹H NMR spectrum of the anhydride (Figure 1) shows a clean ABC pattern which can correspond to either 3-nitro-(structure I) or 6-nitro-2-sulfobenzoic anhydride (structure II) but not to the earlier claimed 5-nitro-2-sulfobenzoic anhydride (structure III). The ¹³C NMR spectrum (Figure 2) strongly supports the view that the structure is that of the 3-nitro-2-sulfobenzoic anhydride (I). The most shielded C1 carbon (129.58 ppm) should appear as a doublet for 3-nitro-2-sulfobenzoic anhydride (coupling to H5 (${}^{3}J_{C-H} = 9.12$ Hz)) but as a triplet or a pair of doublets for 6-nitro-2-sulfobenzoic anhydride (coupling to H3 and H5).⁶ The observed doublet indicates 3-nitro-2-sulfobenzoic anhydride. Also, splitting in the carbonyl C atom (155.71 ppm) ${}^{3}J_{C-H} = 5.12$ Hz and ${}^{4}J_{C-H} = 1.26$ Hz is possible only in the 3-nitro-2-sulfobenzoic anhydride and not in the 6-nitro isomer. The additional assigments are given directly on the spectrum.

Loev, B.; Kormendy, M. J. Org. Chem. 1962, 27, 2177.
 D'Alelio, G. F.; Fessler, W. A.; Feigl, D. M. J. Macromol. Sci. Chem.

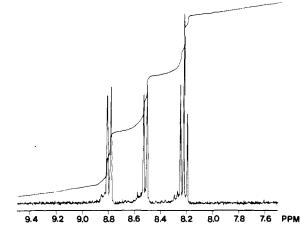


Figure 1. ¹H NMR spectrum of 3-nitro-2-sulfobenzoic anhydride in CDCl₃ at room temperature.

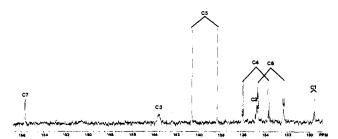


Figure 2. ¹³C NMR spectrum of 3-nitro-2-sulfobenzoic anhydride in CDCl₃ at room temperature.

Carbonyl group has weaker deactivating effect than by the sulfonyl group.⁸ Therefore, the nitration in the anhydride as well as in saccharin should occur at position 3. Although it is difficult to neglect steric effects in the substitution at positions 3 and 6, the electronic effects of sulfonyl and carbonyl moieties in terms of σ_m and σ_p parameters suggest the following order of the electron densities: C3 > C6 > C4 > C5 for sulfonamide and amide substituents. Also electron densities estimated from the ¹³C NMR spectra of anhydride and other sulfobenzoate derivatives⁹ indicate the following order of shielding of carbon atoms: C3 > C6 > C5 $\approx \overline{C4}$. Apparently, steric hindrances do not prohibit nitration at position 3 and substitution proceeds at C3.

We found 3-nitro-2-sulfobenzoic anhydride (I) to be the main product of nitration of both sulfobenzoic anhydride and saccharin. This observation corrects the existing erroneous claim of the formation of 5-nitro-2-sulfobenzoic anhydride (III) under identical reaction conditions.

Experimental Section

Commercially available saccharin and sulfobenzoic anhydride from Aldrich Chemical Co. were used without purification. Melting points were determined using a Mel-Temp open capillary melting point apparatus. IR spectra were recorded on a Nicolet FTIR Model 5DXB type spectrometer. A 300-MHz GE Model 300 spectrometer was used to obtain ¹H and ¹³C NMR spectra.

Nitration of Sulfobenzoic Anhydride or Saccharin. Nitration was carried out using a mixture of concentrated nitric acid and sulfuric acid according to the procedure in the literature.¹⁻³ Compound I was obtained as a white solid product by pouring the reaction mixture onto crushed ice, filtration, washing with cold water, and drying.^{1,2,3} Compound I was formed in 15% yield

^{1969,} A3, 941.

Stubbs, M. C. Am. Chem. J. 1913, 50, 193.
 Karandikar, B.; Puschett, J. B.; Matyjaszewski, K. Am. Chem. Soc. Polym. Preprints 1989, 30(1), 250.

⁽⁵⁾ Rao, B. S.; Puschett, J. B.; Karandikar, B. M.; Matyjaszewski, K. Tetrahedron, submitted.

⁽⁶⁾ Typical range of coupling constants in aromatic systems is ${}^{2}J_{C-H} = 0-2$ Hz, ${}^{3}J_{C-H} = 8-10$ Hz, ${}^{4}J_{C-H} = 0-2$ Hz.⁷ (7) Wehrli, F. W.; Wirthlin, T. Interpretation of ${}^{13}C$ NMR Spectra;

Heyden & Sons: Philadelphia, 1978; Chapter 3.

⁽⁸⁾ Exner, O. Prog. Phys. Org. Chem. 1973, 10, 10. (9) ¹³C chemical shift prediction is based on the equation $\delta_{C_i} = 128.5$ Z. 10

⁽¹⁰⁾ Ewing, D. F. Org. Magn. Reson. 1979, 12, 499.

with a melting point of 215-217 °C (lit. mp 210-212 °C,¹ 212-218 °C,² 212 °C³). IR (KBr, cm⁻¹): 1800, 1530, 1340, 1190, 1040, 1010. ¹H NMR (CDCl₃, δ ppm): 8.80 (d), 8.53 (d), 8.22 (t). ¹³C NMR (CDCl₃, δ ppm): 129.58 (C1), 133.49, 134.86 (C4 or C6), 134.80 (C2), 139.49 (C5), 143.60 (C3), 155.71 (C7).

Registry No. I, 127472-56-4; III, 22952-25-6; sulfobenzoic anhydride, 81-08-3; saccharin, 81-07-2.

Convenient General Method for the Preparation of Primary Alkyllithiums by Lithium-Iodine Exchange

William F. Bailey* and Eric R. Punzalan

Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060

Received March 16, 1990

The metathesis between an organic halide and an organolithium known as the lithium-halogen interchange was discovered some 50 years ago by the groups of Wittig and Gilman.^{1,2} The reaction, which is a reversible process leading to an equilibrium mixture favoring the more stable organolithium,³ has been used extensively to prepare relatively stable organometallics such as aryl-,4-10 vinyl-,^{5-9,11,12} and cyclopropyllithiums^{6-9,13} by treatment of the corresponding organohalide with a more reactive alkyllithium, but the use of the interchange for the generation of an alkyllithium has, with a few notable exceptions,¹⁴⁻¹⁶ met with less success.⁴⁻⁹ The difficulties commonly encountered in the formation of simple alkyllithiums by lithium-halogen interchange are a consequence of the reversible nature of the reaction and the capricious behavior of alkyl halides when treated with an organolithium. Competing reactions such as β -elimination, $4-9 \alpha$ -metalation, i_7 and Wurtz-type coupling to produce symmetrical and mixed hydrocarbons^{3,6-9} can seriously compromise the interchange as an efficient route to alkyllithiums. Recent

(1) (a) Wittig, G.; Pockels, U.; Droge, H. Chem. Ber. 1938, 71, 1903. (b) Gilman, H.; Langham, W.; Jacoby, A. L. J. Am. Chem. Soc. 1939, 61, 106.

- is affected by such factors as solvent, temperature, and concentration. (3) Applequist, D. E.; O'Brien, D. F. J. Am. Chem. Soc. 1963, 85, 743. (4) Gilman, H.; Jones, R. G. Org. React (N.Y.) 1951, 6, 339.
 (5) Jones, R. G.; Gilman, H. Chem. Rev. 1954, 54, 835.
- (6) Scholkopf, U. In Methoden der Organischen Chemie; Georg Thieme: Stuttgart, 1970; Vol. 13/1.
- (7) Wakefield, B. J. The Chemistry of Organolithium Compounds; Pergamon Press: New York, 1974.

- (8) (a) Wakefield, B. J. In Comprehensive Organic Chemistry; Jones,
 D. N., Ed.; Pergamon Press: New York, 1979; Vol. 3, p 943. (b) Wardell,
 J. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.;
 Pergamon Press: New York, 1982; Vol. 1, p 43.
- (9) Wakefield, B. J. Organolithium Methods; Pergamon Press: New York, 1988.
- (10) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300.
- (11) Seebach, D.; Neumann, H. Chem. Ber. 1974, 107, 847.
 (12) Boardman, L. D.; Bagheri, V.; Sawada, H.; Negishi, E. J. Am.
- Chem. Soc. 1984, 106, 6105. (13) (a) Walborsky, H. M.; Impastato, F. J.; Young, A. E. J. Am. Chem. Soc. 1964, 86, 3283. (b) Walborsky, H. M.; Banks, R. B. Bull. Soc. Chim. Belg. 1980, 89, 849 and references therein. (14) Cooke, M. P., Jr.; Widener, R. K. J. Org. Chem. 1987, 52, 1381 and
- references therein.
- (15) Swanson, D. R.; Rousset, C. J.; Negishi, E.; Takahashi, T.; Seki,
 T.; Saburi, M.; Uchida, Y. J. Org. Chem. 1989, 54, 3521.
 (16) Bailey, W. F.; Rossi, K. J. Am. Chem. Soc. 1989, 111, 765.
 (17) (a) Gschwend, H. W.; Rodriquez, H. R. Org. React. (N.Y) 1979,
 26, 1. (b) Klumpp, G. W. Recl. Trav. Chim. Pays-Bas 1986, 105, 1.

mechanistic investigations of the lithium-halogen exchange¹⁸⁻²¹ have revealed that many of these difficulties can be circumvented by judicious choice of experimental conditions. Herein we report a simple, convenient, and efficient method for the preparation of primary alkyllithiums by low-temperature lithium-iodine interchange that is based on the results of these mechanistic studies.

Primary alkyllithiums are readily prepared at -78 °C (dry ice/acetone bath) under an atmosphere of dry, deoxygenated argon (or nitrogen) by addition of 2.1-2.2 molar equiv of commercial tert-butyllithium (t-BuLi) in pentane to an approximately 0.1 M solution of primary alkyl iodide in dry *n*-pentane-diethyl ether (3:2 by volume). Neither the temperature nor the concentration of the alkyl iodide is critical to the success of the reaction: the interchange is exothermic, and for this reason the reaction should be run well below ambient, but the exchange proceeds rapidly and cleanly at temperatures ranging from $-131 \text{ °C} (N_2/$ pentane bath) to $-23 \,^{\circ}C \,(CCl_4/dry$ ice bath). The interchange is complete within a few min at -78 °C (or -131 °C), and the alkyllithium may be used at this temperature; however, the excess *t*-BuLi remaining in solution may complicate product isolation if an electrophile is added to the cold reaction mixture. Residual t-BuLi is easily removed by simply allowing the reaction mixture to stand at room temperature for ca. 1 h: the t-BuLi is consumed by rapid proton abstraction from diethyl ether,²² leaving a clean solution of the less reactive primary alkyllithium. As demonstrated by the results summarized in Table I, addition of any of a variety of electrophiles to the alkyllithium solution delivers essentially pure product in good to excellent isolated yield. Significantly, the only byproduct generated by this procedure is a small quantity (typically 2–10%) of easily removed hydrocarbon derived, as detailed below, from formal reduction of the iodide during the interchange reaction.^{18,23}

$$\operatorname{RCH}_{2}I \xrightarrow[n-C_{6}H_{12}/Et_{2}O]{t-BuLi} \operatorname{RCH}_{2}Li \xrightarrow{E^{+}} \operatorname{RCH}_{2}E$$

The success of the interchange reaction depends critically on the choice of halide, alkyllithium, and solvent. Under the conditions outlined above, the mechanism of the interchange reaction between a primary alkyl iodide and t-BuLi most likely involves rapid, reversible attack of the alkyllithium on the iodine atom of the substrate.^{18,20,24,25} Primary alkyl bromides, in contrast, react with t-BuLi predominantly by a process involving single-electron transfer.^{18-21,26} This pronounced halogen effect on the mechanism of the interchange has a practical consequence: alkyl iodides rather than bromides should be used in the exchange reaction for the preparation of primary alkyl-

(18) Bailey, W. F.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1.
(19) (a) Bailey, W. F.; Gagnier, R. P. Tetrahedron Lett. 1982, 23, 5123.
(b) Bailey, W. F.; Gagnier, R. P.; Patricia, J. J. J. Org. Chem. 1984, 49, 2098

- (20) (a) Bailey, W. F.; Patricia, J. J.; Nurmi, T. T.; Wang, W. Tetrahedron Lett. 1986, 27, 1861. (b) Bailey, W. F.; Patricia, J. J.; Nurmi, T. T. Tetrahedron Lett. 1986, 27, 1865.
 (21) (a) Ashby, E. C.; Pham, T. N.; Park, B. Tetrahedron Lett. 1985, 26, 4691. (b) Ashby, E. C.; Pham, T. N. J. Org. Chem. 1987, 52, 1291.
- (22) Bates, T. F.; Clarke, M. T.; Thomas, R. D. J. Am. Chem. Soc. 1988, 110, 5109.
- (23) Bailey, W. F.; Nurmi, T. T.; Patricia, J. J.; Wang, W. J. Am. Chem. Soc. 1987, 109, 2442. (24) Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. 1986, 108,
- 2449.
- (25) (a) Reich, H. J.; Phillips, N. H.; Reich, I. L. J. Am. Chem. Soc.
 1985, 107, 4101. (b) Reich, H. J.; Green, D. P.; Phillips, N. H. J. Am. Chem. Soc. 1989, 111, 3444.
- (26) Newcomb, M.; Williams, W. G.; Crumpacker, E. L. Tetrahedron Lett. 1985, 26, 1183.

⁽²⁾ Although organolithiums are often (as here) depicted as monomeric, they are known to exist as aggregates whose degree of association